Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Singh, M."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Study of Nanomaterials under High Pressure
    (Advances in Nanoparticles, 2013) Singh, M.; Kao, M.
    A simple theory is proposed to predict the effect of pressure for study of volume expansion of nanomaterials. Different possible forms of equation of state are discussed with their correlations. Only two input parameters, namely, the bulk modulus and its first pressure derivative, are required for calculations. We have considered a wide variety of nanomaterials, such as, CdSe (4.2 nm), Fe-Cu (14 nm), ?-Al2O3 (67 nm), ?-Al2O3 (37 nm), Ni (20 nm), Fe (10 nm), CeO2 (cubic Fluorite phase) (15 nm), CeO2 (Orthorhombic Phase) (15 nm), CuO (24 nm) and TiO2 (rutile phase) (10 nm) to analyze the effect of pressure on them. The theoretical predictions for the given nanomaterials agree with the experimental results and the other theoretical models.
  • No Thumbnail Available
    Item
    Thermal Expansion in Zinc Oxide Nanomaterials
    (Nanoscience and Nanotechnology Research, 2013) Singh, M.; Singh, Madan.
    Thermal expansion of rock salt and wurtize phases of Zinc Oxide nanomaterials has been studied using various relationships between volume thermal expansivity and temperature. The numerical values of volume thermal expansion coefficient for rs-ZnO and w-ZnOnanomaterials have been calculated in low and high temperature ranges. It is observed that in low temperature range i.e. upto room temperature, volume thermal expansion coefficient increases with slow rate with temperature for both the phases of Zinc Oxide while in high temperature range, thermal expansion coefficient increases with high rate with increase in temperature in the case of rs-ZnO and with slow rate in the case of w-ZnO. The available experimental predictions that demonstrates the validity of the work.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback