Group classification, symmetry reductions and exact solutions of a generalized Korteweg-de Vries-Burgers equation

dc.contributor.authorMolati, M.
dc.contributor.authorKhaliqu, C. M.
dc.contributor.authorAdem, A.R.
dc.date.accessioned2020-11-02T09:53:58Z
dc.date.available2020-11-02T09:53:58Z
dc.date.issued2015-01-01
dc.description.abstractLie group classification is performed on the generalized Korteweg-de Vries-Burgers equationut+δuxxx+g(u)ux−νuxx+γu=f(x), which occurs in many applications of physical phenomena. We show that the equation admits a four-dimensional equivalenceLie algebra. It is also shown that the principal Lie algebra consists of a single translation symmetry. Several possibleextensions of theprincipal Lie algebra are computed and their associated symmetry reductions and exact solutions are obtained. Also, one-dimensionaloptimal system of subalgebras is obtained for the case when the principal Lie algebra is extended by two symmetries.en_ZA
dc.identifier.citationAdem, A. R., Khalique, C. M., & Molati, M. (2015). Group Classification, Symmetry Reductions and Exact Solutions of a Generalized Korteweg-de Vries-Burgers Equation. Appl. Math, 9(1), 501-506en_ZA
dc.identifier.urihttp://dx.doi.org/10.12785/amis/090158
dc.identifier.urihttps://repository.tml.nul.ls/handle/20.500.14155/1460
dc.language.isoenen_ZA
dc.publisherNatural Sciences Publishingen_ZA
dc.rightsNatural Sciences Publishingen_ZA
dc.sourceApplied Mathematics & Information Sciencesen_ZA
dc.subjectGeneralized Korteweg-de Vries-Burgers equationen_ZA
dc.subjectGroup classificationen_ZA
dc.subjectSymmetry reductionsen_ZA
dc.subjectExact solutionsen_ZA
dc.titleGroup classification, symmetry reductions and exact solutions of a generalized Korteweg-de Vries-Burgers equationen_ZA
dc.typeArticleen_ZA
Files
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: