Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Murakawa, H."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    An efficient linear numerical scheme for the Stefan problem, the porous medium equation and nonlinear cross-diffusion systems
    (SPEKTRUM STU Publishing, 2017-12-29) Molati, M.; Murakawa, H.
    This paper deals with nonlinear diffusion problems which include the Stefan problem, the porous medium equation and cross-diffusion systems. We provide a linear scheme for these nonlinear diffusion problems. The proposed numerical scheme has many advantages, namely, it is very easy-to-implement, the ensuing linear algebraic systems are symmetric, it requires low computational cost, the accuracy is comparable to that of the well-studied nonlinear schemes, the computation is much faster than the nonlinear schemes to obtain the same level of accuracy. In this paper, numerical experiments are carried out to demonstrate efficiency of the proposed scheme.
  • No Thumbnail Available
    Item
    Exact solutions of nonlinear diffusion-convection-reaction equation: A Lie symmetry analysis approach
    (Elsevier, 2019) Molati, M.; Murakawa, H.
    We derive some exact solutions of a nonlinear diffusion-convection-reaction equation which models biological, chemical and physical phenomena. The Lie symmetry classification approach is employed to specify the model parameters and then the symmetries of resulting submodels are utilized for construction of exact solutions.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback